3.141 \(\int \frac{(a \sin (e+f x))^{3/2}}{(b \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=93 \[ \frac{2 a^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{b \tan (e+f x)}}{3 b^2 f \sqrt{a \sin (e+f x)}}+\frac{2 (a \sin (e+f x))^{3/2}}{3 b f \sqrt{b \tan (e+f x)}} \]

[Out]

(2*(a*Sin[e + f*x])^(3/2))/(3*b*f*Sqrt[b*Tan[e + f*x]]) + (2*a^2*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2]*
Sqrt[b*Tan[e + f*x]])/(3*b^2*f*Sqrt[a*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.112447, antiderivative size = 93, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {2596, 2601, 2641} \[ \frac{2 a^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{b \tan (e+f x)}}{3 b^2 f \sqrt{a \sin (e+f x)}}+\frac{2 (a \sin (e+f x))^{3/2}}{3 b f \sqrt{b \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a*Sin[e + f*x])^(3/2)/(b*Tan[e + f*x])^(3/2),x]

[Out]

(2*(a*Sin[e + f*x])^(3/2))/(3*b*f*Sqrt[b*Tan[e + f*x]]) + (2*a^2*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2]*
Sqrt[b*Tan[e + f*x]])/(3*b^2*f*Sqrt[a*Sin[e + f*x]])

Rule 2596

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*Sin[e + f
*x])^m*(b*Tan[e + f*x])^(n + 1))/(b*f*m), x] - Dist[(a^2*(n + 1))/(b^2*m), Int[(a*Sin[e + f*x])^(m - 2)*(b*Tan
[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && GtQ[m, 1] && IntegersQ[2*m, 2*n]

Rule 2601

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(Cos[e + f*x
]^n*(b*Tan[e + f*x])^n)/(a*Sin[e + f*x])^n, Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x], x] /; FreeQ[{a, b
, e, f, m, n}, x] &&  !IntegerQ[n] && (ILtQ[m, 0] || (EqQ[m, 1] && EqQ[n, -2^(-1)]) || IntegersQ[m - 1/2, n -
1/2])

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a \sin (e+f x))^{3/2}}{(b \tan (e+f x))^{3/2}} \, dx &=\frac{2 (a \sin (e+f x))^{3/2}}{3 b f \sqrt{b \tan (e+f x)}}+\frac{a^2 \int \frac{\sqrt{b \tan (e+f x)}}{\sqrt{a \sin (e+f x)}} \, dx}{3 b^2}\\ &=\frac{2 (a \sin (e+f x))^{3/2}}{3 b f \sqrt{b \tan (e+f x)}}+\frac{\left (a^2 \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)}\right ) \int \frac{1}{\sqrt{\cos (e+f x)}} \, dx}{3 b^2 \sqrt{a \sin (e+f x)}}\\ &=\frac{2 (a \sin (e+f x))^{3/2}}{3 b f \sqrt{b \tan (e+f x)}}+\frac{2 a^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right ) \sqrt{b \tan (e+f x)}}{3 b^2 f \sqrt{a \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.232295, size = 80, normalized size = 0.86 \[ \frac{2 a \sqrt{a \sin (e+f x)} \left (\sin (e+f x) \sqrt [4]{\cos ^2(e+f x)}+F\left (\left .\frac{1}{2} \sin ^{-1}(\sin (e+f x))\right |2\right )\right )}{3 b f \sqrt [4]{\cos ^2(e+f x)} \sqrt{b \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*Sin[e + f*x])^(3/2)/(b*Tan[e + f*x])^(3/2),x]

[Out]

(2*a*Sqrt[a*Sin[e + f*x]]*(EllipticF[ArcSin[Sin[e + f*x]]/2, 2] + (Cos[e + f*x]^2)^(1/4)*Sin[e + f*x]))/(3*b*f
*(Cos[e + f*x]^2)^(1/4)*Sqrt[b*Tan[e + f*x]])

________________________________________________________________________________________

Maple [C]  time = 0.15, size = 137, normalized size = 1.5 \begin{align*} -{\frac{2\,\sin \left ( fx+e \right ) }{3\,f \left ( \cos \left ( fx+e \right ) -1 \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}} \left ( i\sqrt{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( fx+e \right ) }{\cos \left ( fx+e \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( \cos \left ( fx+e \right ) -1 \right ) }{\sin \left ( fx+e \right ) }},i \right ) \sin \left ( fx+e \right ) - \left ( \cos \left ( fx+e \right ) \right ) ^{2}+\cos \left ( fx+e \right ) \right ) \left ( a\sin \left ( fx+e \right ) \right ) ^{{\frac{3}{2}}} \left ({\frac{b\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*sin(f*x+e))^(3/2)/(b*tan(f*x+e))^(3/2),x)

[Out]

-2/3/f*sin(f*x+e)*(I*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*EllipticF(I*(cos(f*x+e)-1)/sin
(f*x+e),I)*sin(f*x+e)-cos(f*x+e)^2+cos(f*x+e))*(a*sin(f*x+e))^(3/2)/(cos(f*x+e)-1)/cos(f*x+e)^2/(b*sin(f*x+e)/
cos(f*x+e))^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a \sin \left (f x + e\right )\right )^{\frac{3}{2}}}{\left (b \tan \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sin(f*x+e))^(3/2)/(b*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e))^(3/2)/(b*tan(f*x + e))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{a \sin \left (f x + e\right )} \sqrt{b \tan \left (f x + e\right )} a \sin \left (f x + e\right )}{b^{2} \tan \left (f x + e\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sin(f*x+e))^(3/2)/(b*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(a*sin(f*x + e))*sqrt(b*tan(f*x + e))*a*sin(f*x + e)/(b^2*tan(f*x + e)^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sin(f*x+e))**(3/2)/(b*tan(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a \sin \left (f x + e\right )\right )^{\frac{3}{2}}}{\left (b \tan \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sin(f*x+e))^(3/2)/(b*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e))^(3/2)/(b*tan(f*x + e))^(3/2), x)